Priming of macrophages with lipopolysaccharide potentiates P2X7-mediated cell death via a caspase-1-dependent mechanism, independently of cytokine production.
نویسندگان
چکیده
ATP stimulation of cell surface P2X7 receptors results in cytolysis and cell death of macrophages. Activation of this receptor in bacterial lipopolysaccharide (LPS)-activated macrophages or monocytes also stimulates processing and release of the cytokine interleukin-1beta(IL-1beta) through activation of caspase-1. The cytokine interleukin 18 (IL-18) is also cleaved by caspase-1 and shares pro-inflammatory characteristics with IL-1beta. The objective of the present study was to test the hypothesis that IL-1beta, IL-18, and/or caspase-1 activation contribute directly to macrophage cell death induced by LPS and ATP. Macrophages were cultured from normal mice or those in which genes for the P2X7 receptor, IL-1beta, IL-1alpha, IL-18, or caspase-1 had been deleted. Our data confirm the importance of the P2X7 receptor in ATP-stimulated cell death and IL-1beta release from LPS-primed macrophages. We demonstrate that prolonged stimulation with ATP leads to cell death, which is partly dependent on LPS priming and caspase-1, but independent of cytokine processing and release. We also provide evidence that LPS priming of macrophages makes them highly susceptible to the toxic effects of brief exposure to ATP, which leads to rapid cell death by a mechanism that is dependent on caspase-1 but, again, independent of cytokine processing and release.
منابع مشابه
Antimicrobial Cathelicidin Peptide LL-37 Inhibits the LPS/ATP-Induced Pyroptosis of Macrophages by Dual Mechanism
Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role...
متن کاملThe RD1 locus in the Mycobacterium tuberculosis genome contributes to activation of caspase-1 via induction of potassium ion efflux in infected macrophages.
A genomic locus called "region of difference 1" (RD1) in Mycobacterium tuberculosis has been shown to contribute to the generation of host protective immunity as well as to the virulence of the bacterium. To gain insight into the molecular mechanism, we investigated the difference in the cytokine-inducing ability between H37Rv and a mutant strain deficient for RD1 (DeltaRD1). We found that RD1 ...
متن کاملTemporal Interleukin-1β Secretion from Primary Human Peripheral Blood Monocytes by P2X7-independent and P2X7-dependent Mechanisms*
The processing and regulated secretion of IL-1beta are critical points of control of the biological activity of this important pro-inflammatory cytokine. IL-1beta is produced by both monocytes and macrophages, but the rate and mechanism of release differ according to the differentiation status and the origin of these cells. We aimed to study the control of processing and release in human blood ...
متن کاملThe P2X7 Receptor Mediates Toxoplasma gondii Control in Macrophages through Canonical NLRP3 Inflammasome Activation and Reactive Oxygen Species Production
Toxoplasma gondii (T. gondii) is the protozoan parasite that causes toxoplasmosis, a potentially fatal disease to immunocompromised patients, and which affects approximately 30% of the world's population. Previously, we showed that purinergic signaling via the P2X7 receptor contributes to T. gondii elimination in macrophages, through reactive oxygen species (ROS) production and lysosome fusion ...
متن کاملNeutrophil extracellular traps induce IL-1β production by macrophages in combination with lipopolysaccharide
Upon exposure to invading microorganisms, neutrophils undergo NETosis, a recently identified type of programmed cell death, and release neutrophil extracellular traps (NETs). NETs are described as an antimicrobial mechanism, based on the fact that NETs can trap microorganisms and exhibit bactericidal activity through the action of NET‑associated components. In contrast, the components of NETs h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 5 شماره
صفحات -
تاریخ انتشار 2002